Role of Polymers in biology and biological systems
Biological macromolecules which are necessary for life include carbohydrates, lipids, nucleic acids, and proteins. These are the important cellular components and perform a wide array of functions necessary for the survival and growth of living organisms. These play a critical role in cell structure and function. Most biological macromolecules are polymers, which are any molecules constructed by linking together many smaller molecules, called monomers. Typically all the monomers in a polymer tend to be the same, or at least very similar to each other, linked over and over again to build up the larger macromolecule. These simple monomers can be linked in many different combinations to produce complex biological polymers. The roles of macromolecules in living systems as information storage systems (as DNA) and in biochemical synthesis have been much studied and are relatively well understood and the roles of polymers in biological lubrication and its relation both to diseases such as osteoarthritis and to remedies such as tissue engineering. Protein polymers are available in large quantities in biology, and a huge variety of distinct filaments can be found and Protein misfolding can be a route to pathological polymerization in diseases from Alzheimer’s to Parkinson’s. Synthetic polymers without difficulty can be formed from peptides and these are being studied for many causes, from forming new biomaterials to drug delivery/imaging. The demand for bio-based polymers is assumed to surge during the estimated period of 2015-2019 owing to the favorable regulatory outlook. The global biomarkers market is expected to reach US $45.55 Billion by 2020 from $24.10 Billion in 2015, at a CAGR of 13.58% through 2015 and 2020.
- Biocomposites
- Bioelastomers
- Polymers in biotechnology
- Polymers for biosensors
- Polymers in crop plantation, protection and preservation
- Bioplastics & Biopolymers
- Bioresorbable polymers
- Seed coating materials
Related Conference of Role of Polymers in biology and biological systems
31st International Conference on Advanced Materials, Nanotechnology and Engineering
11th International Conference and Expo on Ceramics and Composite Materials
23rd International Conference and Exhibition on Materials Science and Chemistry
Role of Polymers in biology and biological systems Conference Speakers
Recommended Sessions
- Advanced Polymer Structures
- Applications of Polymers
- Composite Polymeric Materials
- Polymer Chemistry
- Polymer Material Science and Engineering
- Polymer Nanotechnology
- Polymer Physics
- Polymer Science – The Next Generation
- Polymers and the Future of Industries
- Role of Polymers in biology and biological systems
Related Journals
Are you interested in
- Additive Manufacturing and 3D Printing - Material science 2025 (UK)
- Additive Manufacturing and 3D Printing - Material science 2025 (UK)
- Additive Manufacturing of Ceramics and Composites - Ceramics 2025 (UK)
- Advanced Characterization Techniques - Ceramics 2025 (UK)
- Advanced Characterization Techniques for Materials - Material science 2025 (UK)
- Advanced Characterization Techniques for Materials - Material science 2025 (UK)
- Advanced Coatings and Surface Treatments for Biomaterials - Biomaterials 2025 (France)
- Advanced Materials and Functional Devices : - ADVANCED MATERIALS 2025 (UK)
- Advanced Materials and Nanotechnology : - ADVANCED MATERIALS 2025 (UK)
- Advances in Nanomaterials and Nanotechnology - Material science 2025 (UK)
- Advances in Nanomaterials and Nanotechnology - Material science 2025 (UK)
- Bioactive Materials and Surface Modification - Biomaterials 2025 (France)
- Bioceramics and Biomedical Applications - Ceramics 2025 (UK)
- Biocompatibility and Safety of Biomaterials - Biomaterials 2025 (France)
- Bioinformatics and Computational Modeling in Biomaterials - Biomaterials 2025 (France)
- Biomaterials in Wound Healing and Tissue Repair - Biomaterials 2025 (France)
- Biomaterials and Tissue Engineering - Material science 2025 (UK)
- Biomaterials and Tissue Engineering - Material science 2025 (UK)
- Biomaterials for Aesthetic and Reconstructive Surgery - Biomaterials 2025 (France)
- Biomaterials for Antibacterial and Antiviral Applications - Biomaterials 2025 (France)
- Biomaterials for Cardiovascular Applications - Biomaterials 2025 (France)
- Biomaterials for Diagnostic and Imaging Technologies - Biomaterials 2025 (France)
- Biomaterials for Gastrointestinal Applications - Biomaterials 2025 (France)
- Biomaterials for Gene and Cell Therapy - Biomaterials 2025 (France)
- Biomaterials for Neurological Applications - Biomaterials 2025 (France)
- Biomaterials in Cancer Treatment and Oncology - Biomaterials 2025 (France)
- Biomaterials in Orthopedics and Bone Regeneration - Biomaterials 2025 (France)
- Biomedical Nanotechnology : - ADVANCED MATERIALS 2025 (UK)
- Carbon Nanostructures and Graphene - Materials Chemistry 2025 (France)
- Carbon Nanostructures and Graphene : - ADVANCED MATERIALS 2025 (UK)
- Ceramic Armour and Defence Applications - Ceramics 2025 (UK)
- Ceramic Coatings and Thin Films - Ceramics 2025 (UK)
- Ceramic Matrix Composites (CMCs) - Ceramics 2025 (UK)
- Ceramic Processing Techniques - Ceramics 2025 (UK)
- Ceramic Recycling and Waste Reduction - Ceramics 2025 (UK)
- Ceramics in Materials Science - Materials Chemistry 2025 (France)
- Challenges in Translational Biomaterials Research - Biomaterials 2025 (France)
- Chemical Engineering - Materials Chemistry 2025 (France)
- Composite Material Design and Development - Ceramics 2025 (UK)
- Composite Materials : - ADVANCED MATERIALS 2025 (UK)
- Computational Materials Science and Modeling - Material science 2025 (UK)
- Computational Materials Science and Modeling - Material science 2025 (UK)
- Electrical and Electronic Ceramics - Ceramics 2025 (UK)
- Emerging Functional Materials for Electronics and Photonics - Material science 2025 (UK)
- Emerging Functional Materials for Electronics and Photonics - Material science 2025 (UK)
- Emerging Trends in Biodegradable Biomaterials - Biomaterials 2025 (France)
- Energy and Environmental Applications - Ceramics 2025 (UK)
- Environmental Sensors Using Ceramics - Ceramics 2025 (UK)
- Fracture, Fatigue and Failure of Materials - Materials Chemistry 2025 (France)
- Functional Ceramics - Ceramics 2025 (UK)
- Glass Ceramics and Applications - Ceramics 2025 (UK)
- Green Synthesis and Processing of Materials - Material science 2025 (UK)
- Green Synthesis and Processing of Materials - Material science 2025 (UK)
- High-Performance Structural Materials - Ceramics 2025 (UK)
- High-Temperature Superconductors - Ceramics 2025 (UK)
- Industrial applications of crystallization - Materials Chemistry 2025 (France)
- Lightweight Composites for Aerospace and Automotive - Ceramics 2025 (UK)
- Materials for Advanced Coatings and Surface Engineering - Material science 2025 (UK)
- Materials for Advanced Coatings and Surface Engineering - Material science 2025 (UK)
- Materials for Aerospace and Automotive Applications - Material science 2025 (UK)
- Materials for Aerospace and Automotive Applications - Material science 2025 (UK)
- Materials for Biomedical Applications - Material science 2025 (UK)
- Materials for Biomedical Applications - Material science 2025 (UK)
- Materials for Energy and Environmental Sustainability - Material science 2025 (UK)
- Materials for Energy and Environmental Sustainability - Material science 2025 (UK)
- Materials for Nanoelectronics and Quantum Technologies - Material science 2025 (UK)
- Materials for Nanoelectronics and Quantum Technologies - Material science 2025 (UK)
- Materials for Optoelectronic Devices - Material science 2025 (UK)
- Materials for Optoelectronic Devices - Material science 2025 (UK)
- Materials for Renewable Energy Technologies - Material science 2025 (UK)
- Materials for Renewable Energy Technologies - Material science 2025 (UK)
- Materials for Sensing and Actuation - Material science 2025 (UK)
- Materials for Sensing and Actuation - Material science 2025 (UK)
- Materials for Structural Applications and Lightweight Design - Material science 2025 (UK)
- Materials for Structural Applications and Lightweight Design - Material science 2025 (UK)
- Materials for Sustainable Construction and Infrastructure Development - Material science 2025 (UK)
- Materials for Sustainable Construction and Infrastructure Development - Material science 2025 (UK)
- Materials Science and Chemistry - Materials Chemistry 2025 (France)
- Mineralogy - Materials Chemistry 2025 (France)
- Miniaturization Technology : - ADVANCED MATERIALS 2025 (UK)
- Molecular biology and Materials science : - ADVANCED MATERIALS 2025 (UK)
- Nano Materials : - ADVANCED MATERIALS 2025 (UK)
- Nano pharmaceuticals - Materials Chemistry 2025 (France)
- Nano Structures - ADVANCED MATERIALS 2025 (UK)
- Nano Technology and Photonics Communication : - ADVANCED MATERIALS 2025 (UK)
- Nanocluster and Nanoscience : - ADVANCED MATERIALS 2025 (UK)
- Nanocluster and Nanoscience : - ADVANCED MATERIALS 2025 (UK)
- Nanodentistry - Materials Chemistry 2025 (France)
- Nanometrology and Instrumentation : - ADVANCED MATERIALS 2025 (UK)
- Nanoparticle and Nanoscale Research : - ADVANCED MATERIALS 2025 (UK)
- Nanoparticle Synthesis and Applications: - ADVANCED MATERIALS 2025 (UK)
- Nanosensors Devices : - ADVANCED MATERIALS 2025 (UK)
- Nanostructured Ceramics - Ceramics 2025 (UK)
- Nanotechnology Applications - Materials Chemistry 2025 (France)
- Nanotechnology-Basics to Applications : - ADVANCED MATERIALS 2025 (UK)
- Novel Materials for Energy Storage and Conversion - Material science 2025 (UK)
- Novel Materials for Energy Storage and Conversion - Material science 2025 (UK)
- Optical Materials and Plasmonics : - ADVANCED MATERIALS 2025 (UK)
- Photonic and Optical Materials - Materials Chemistry 2025 (France)
- Polymer Science and Applications - Materials Chemistry 2025 (France)
- Properties of Nano Materials : - ADVANCED MATERIALS 2025 (UK)
- Recycling and Sustainability in Ceramics - Ceramics 2025 (UK)
- Science and Technology of Advanced Materials - Materials Chemistry 2025 (France)
- Science and Technology of Advanced Materials : - ADVANCED MATERIALS 2025 (UK)
- Smart and Responsive Biomaterials - Biomaterials 2025 (France)
- Smart Materials and Intelligent Systems - Material science 2025 (UK)
- Smart Materials and Intelligent Systems - Material science 2025 (UK)
- Solid-State Chemistry and Physics - Materials Chemistry 2025 (France)
- Spintronics: - ADVANCED MATERIALS 2025 (UK)
- Surgical Applications of Biomaterials - Biomaterials 2025 (France)
- Sustainability in Biomaterials Development - Biomaterials 2025 (France)
- Sustainable Materials for a Greener Future - Material science 2025 (UK)
- Sustainable Materials for a Greener Future - Material science 2025 (UK)
- The Role of Biomaterials in Infection Control - Biomaterials 2025 (France)
- Tissue Engineering - Materials Chemistry 2025 (France)
- Wearable and Flexible Ceramics - Ceramics 2025 (UK)